Actually, it was a fortunately placed phone call from an aquarium curator that struck the other night. I was at home, having eaten dinner and reviewed my lecture for the following morning, when my phone rang. It was the curator, saying that he was making his last rounds of the evening and had noticed that some of his sea stars were spawning. Echinoderm sex–more specifically, the opportunity to collect gametes and observe larval development–always grabs my attention, so I told him I’d throw on some shoes and meet him at the marine lab in five minutes.
Lo and behold, there were leather stars (Dermasterias imbricata) spawning in several of the tanks and seawater tables. Many of the tables were cloudy with sperm, but I found only one female, which seems strange but isn’t so unusual. These spawning events occur in response to some environmental cue, such as day-length, a chemical of some sort, or the phase of the moon. When a sea star (or sea urchin) spawns it also releases chemicals that trigger spawning in nearby conspecifics, as to spawn by oneself is an enormous waste of energy. A single spawning animal can result in all the others of its kind spewing out huge numbers of gametes in an orgy of passive sex. However, an animal can be induced to spawn only if its gonads are ripe. Ripeness depends on the overall health of the animal and requires adequate food; animals that don’t receive enough food don’t have energy to allocate towards gamete production. As eggs are energetically expensive to produce, compared to sperm, it is not unusual for males of a species to mature earlier in the reproductive season than the females. In Washington the spawning season for D. imbricata is April-August. Here in California the reproductive season hasn’t been clearly defined, but I do remember a springtime spontaneous spawning event in the lab several years ago.
That creamy looking mass of goo on the star’s aboral surface is a pile of eggs. Sea star eggs are fairly large, compared to the urchin eggs I’m used to, and sticky. They tend to clump together in stringy globs until they are dispersed by water currents. The star whose arm is photobombing in the lower right corner is a male. He was also spawning copiously and is probably the individual who fertilized most of this female’s eggs.
Given the lateness of the hour and the fact that I had to get up early the next morning I didn’t take many pictures of the eggs, although I did look at them to make sure they were fertilized. They were, so I put them into a 1000-mL beaker of seawater and let them do their thing.
Fast forward to today, about a day and a half after fertilization. About two-thirds of the embryos had hatched and were swimming in the water column. Here’s what they look like under the dissecting scope:
I poured off the swimmers into jars and set them up on the paddle table. I gave them a little bit of food, in case their mouths break through before I can get back to the lab tomorrow afternoon. In the meantime, I took a sample of embryos and examined them under the microscope. They look really cool!
The embryos are almost spherical, measuring 290 µm long and 270 µm wide. They are ciliated all over and swim with the rounded end forward. The flattened end is where the process of gastrulation started. That visible invagination begins at a section of the embryo called the blastopore; the channel is the archenteron, the first gut of the larva. In echinoderms, as in chordates (including us humans), the blastopore will end up being the larva’s anus; the mouth breaks through later at the other end of the archenteron. This is why I don’t need to start feeding the larvae right away even though their gut has begun forming.
Tomorrow afternoon I’ll have a brief window of time when I can check on the larvae and see how they’re doing. I think they may have complete guts by then!