The intertidal portion of my participation in Snapshot Cal Coast 2017 is complete. I organized four Bioblitzes, two of which consisted of myself and Brenna and the other two for docents of the Seymour Marine Discovery Center (Tuesday) and the docents of Año Nuevo and Pigeon Point State Parks (Wednesday). The four consecutive days of early morning low tides have been exhausting for a concussed brain and a body dealing with bronchitis for the past several weeks. Good thing the low tide arrives 40-50 minutes later, or I’d probably be dead by now. And even so, I tried to take advantage of the later tides to venture a bit farther afield, so I still ended up getting up at the butt-crack of dawn.
But oh, so totally worth it!
Day 3: Davenport Landing with docents from the Seymour Marine Discovery Center, Tuesday 27 June 2017, low tide -1.1 ft at 08:03
Davenport Landing Beach is a sandy beach with rock outcrops and a fair amount of vertical terrain to the north, and a series of flat benches (similar to those at Natural Bridges) to the south. To get to the good spots at the north end you have to do some cliff scrambling, unless the tide is low enough that you can walk around the rock, which happens maybe once or twice a year. Because it’s easier to get around on the benches to the south, that’s where I took my group for the Bioblitz. The difference in topography also results in some differences in biota and distribution/abundance of organisms; overall biodiversity is probably equivalent at both sites, but certain species are more abundant at one site versus the other.
The morning we went to Davenport was sunny and (almost) warm. This makes for plenty of light for photography, but also lots of glare of the surface of pools and the wet surfaces of organisms themselves. My most successful photos are the ones I took with the camera underwater. Wanting to improve my skills at identifying algae, I concentrated most of my efforts on them while not ignoring my beloved invertebrates.
Coralline algae are red algae whose cells are impregnated with CaCO3. This gives them a crunch texture that is unusual for algae. Corallines come in two forms, encrusting and upright, and can be one of the most abundant organisms in the high and mid intertidal. There are several species of both encrusting and upright corallines on our coast, and most of the time they aren’t identifiable to species by the naked eye. Sometimes I can distinguish between genera for the upright branching species. However, the encrusting species require microscopic examination of cell size, crust thickness, and reproductive structures, none of which can be observed in the field.
Some algae are so distinctive that a quick glance is all it takes to know exactly who they are. With its tiny holdfast, long elastic stipe, and single large pneumatocyst, bullwhip kelp doesn’t look anything like the other kelps in California. Like most kelps, N. luetkeana lives mostly in the very low intertidal or subtidal, where under certain conditions it can be a canopy-forming kelp. About a month ago I noted a big recruitment of baby Nereocystis kelps in the intertidal on the north side of Davenport Landing Beach. I speculated then that they probably wouldn’t persist into the summer. I’ll have to take a morning soon to go up and check on them. Anyway, on our Tuesday Bioblitz we found this big N. luetkeana growing in the intertidal. The stipe was about 1.5 meters long and the pneumatocyst was a little smaller than my closed fist. Given that this individual recruited to that spot and has persisted for a few months, probably, it has a good chance of continuing to survive into the fall. Winter storms, especially if they’re anything like the ones we had this past year, will most likely tear it off, though.
Coralline algae aren’t the only pink things in tidepools. There are pink fish!
Sculpins are notoriously difficult to ID if you don’t have the animal in hand to count things like fin rays and spines. Someone on iNaturalist may be able to ID this fish, but I don’t think the photo is very helpful.
And, just because they’re my favorite photographic subjects in the intertidal, here’s a shot of Anthopleura sola:
As of this writing, 10 participants in this Bioblitz have submitted 204 observations to iNaturalist, with 70 species identified. I know that some people haven’t upload their observations yet, and expect more to come in the next couple of weeks. The docents enjoyed themselves, to the extent that two of them accompanied Brenna and me to our fourth Bioblitz at Pigeon Point.
Day 4: Whaler’s Cove at Pigeon Point with rangers (and one docent) from Pigeon Point and Año Nuevo state parks, Wednesday 28 June 2017, low tide -0.6 ft at 08:53
Usually when I go to Pigeon Point I go to the north side of the point, either scrambling down the cliff next to the lighthouse or about half a mile north to Pistachio Beach. When the park rangers and I were organizing this Bioblitz they suggested going to Whaler’s Cove, as the access is very easy due to a staircase and would be much easier for docents who aren’t used to climbing down cliffs. It ended up being a good decision, as there was much to be seen.
Bioblitzes and iNaturalist are all about photographing individual organisms (as much as possible) so that they can be ID’d by experts in particular fields. This is the ‘tree’ level of observation I mentioned in my previous post. I find that when I’m taking photos with the intent to upload them to iNaturalist the photos themselves tend to be rather boring. The intertidal is such a dynamic and complex habitat that photos of single species tend to lack the visual interest of the real thing. I’ve learned that one of my favorite things to see is organisms living on other organisms.
See what I mean?
Four of this chiton’s eight shell plates are completely covered with encrusting coralline algae. It is also wearing some upright corallines and at least two other red algae, one of which is Mastocarpus papillatus. This photo produced six observations for iNaturalist.
Which is not to say that single-subject photos are always boring. When the subject is as weighty as this gumboot chiton (Cryptochiton stelleri), it deserves its own photo or two.
The largest chiton in the world, Cryptochiton typically lives in the subtidal or the very low intertidal. Unlike other chitons, it doesn’t stick very firmly to the substrate. I was able to reach down and pick up this one with very little effort. In the subtidal this lack of suction isn’t a handicap, as water movement there is less energetic compared to the intertidal, and Cryptochiton does quite well. But it doesn’t really look like a chiton at all, does it? That’s because its eight dorsal shell plates are covered by a thick, tough layer of skin called the mantle. In most chiton species the mantle is restricted to the lateral edges of the dorsal surface. The girdle, as it’s called, exposes the shell plates to some degree. We don’t see Cryptochiton‘s shell plates, but if you run your finger down the middle of the dorsum you can sort of feel them underneath the mantle.
Okay, now for some more ‘forest’ pictures.
I love this one. There’s a lot going on in this small area. The greenish-brown algae are actually a red alga, Mazzaella flaccida. There are two large clumps of stuff in the photo. The clump on the left, consisting of round lumps, is a clone of the aggregating anemone Anthopleura elegantissima. The other clump is a mass of tubes of the polychaete worm Phragmatopoma californica. These two clumps were formed in very different ways, reflecting the vastly different biology of the animals that made them.
Anthopleura elegantissima is one of four species of Anthopleura anemones we have in California and is the only one to grow by cloning. It does so via longitudinal fission, in which an anemone literally rips itself in half. I wrote about them last year. Note that in this aggregation, all of the anemones are about the same size. That’s because they’re all clones of each other and share the exact same genetic makeup.
Whereas a clone of A. elegantissima represents a single genotype formed by cloning, clumps of Phragmatopoma arise by gregarious settlement. Each of the tubes in a clump is occupied by a single worm, which recruited to that spot as a larva and settled down to live its life. When it comes time to look for a permanent home, the planktonic larvae of Phragmatopoma are attracted by the scent of adult conspecifics. The larvae settle on the tubes of existing adults and undergo metamorphosis. Each worm builds its tube as it grows, using some kind of miraculous cement that sticks sand grains together, much as a mason stacks bricks to build a wall. One of the remarkable things about this construction is that the cement is secreted by the animal’s body and starts out sticky and then hardens, all in seawater. It’s a likely candidate for Best Underwater Epoxy around. Interestingly, Phragmatopoma can build its tube only as a growing juvenile. Adult worms that are removed from their tubes do not build new ones, and soon die.
Here’s another nice clump of Phragmatopoma:
See that pile of rocks out there? That’s where we were blitzing. Given the not-so-lowness of the tide I didn’t know if we would be able to make it out there. We were lucky, though, and were able to spend ~30 minutes out on that little point.
So far, the Pigeon Point Bioblitz has yielded 204 observations for iNaturalist, with three participants (so far!) identifying 77 species. Several of my observations were of red algae that I did not recognize; hopefully an expert will come along to ID those for me. Snapshot Cal Coast 2017 continues through this weekend. My intertidal Bioblitzes are over, but I hope to contribute one last set of observations by collecting and examining plankton on Sunday.