Be honest now. When you think of clams, what comes to mind? If you’re like most people, visions of clams steamed in white wine, garlic, and butter might dance in your head. Or perhaps clams in cioppino or a hearty chowder would be your go-to. In any case, I doubt that clams, as actual living creatures, occupy much of your brain. Because let’s face it, at first glance even living clams aren’t the most energetic and charismatic animals. Most of the really cool things that they do, like suck water through their shells for filter feeding and gas exchange, they do while buried in the mud.
When you think about it, though, just the fact that clams live in the sand or mud while depending on water that may be quite far from them is rather amazing. All animals require oxygen, and for marine animals that oxygen comes from seawater. Animals that move freely through the water have access to a ready supply of oxygen. But clams live more or less fixed lives encased in sediment, and water can be quite far from their bodies. How, then, do they pull water into their shells and across their gills? They use siphons, which can reach up to the surface of the sediment into the water column.
A clam has two siphons–one pulls clean water into the shells and the other expels water from the shells. This arrangement allows for one-way flow across the gills, which serve double duty as both feeding and gas exchange organs. The siphons themselves are somewhat muscular and can open and close, but it’s the ciliary action of the gills that create the actual water current. In a living clam the only visible body parts are the siphons, which in some species (e.g., geoducks) are so large that they cannot be entirely withdrawn into the shells.
Of the two siphons in the picture above, can you tell which is the incurrent and which is the excurrent? What do you think is the functional significance of that network of white structures that cover the opening of one of the siphons?
Not only do clams live buried in sediment, but some of them can actually bore into rocks. These boring clams, the pholads, have shells that are morphologically and functionally different from the typical clams you’ve encountered in cioppino. They are elongated on the anterior-posterior axis and the anterior ends are heavily sculpted and fortified to grind into rock. Of course, they can do this only in areas where the rock is soft–you don’t see pholads burrowed into granite, for example.
Fortunately for the pholads, much of the rock in the Santa Cruz area is a soft mudstone, easily eroded and burrowed into. I’ve seen pholads at intertidal sites from Capitola to Davenport. Both dead pholads and live pholads can be seen, but it takes a careful eye to spot the live ones. Of course, all you’d ever see of a living pholad is the siphons. When the animal dies, though, the shells are left behind. As the mudstone continues to erode the shells can be exposed, just like fossils. And as a matter of fact, the mudstone formations around here are known for their fossil contents. I think, but am not certain, that these empty shells in holes belong to Parapholus californica.
How does a clam burrow into even soft rock? A description of burrowing activity of Parapholus californica can be read here. As you can imagine, it’s a slow and continuous process. Fortunately, these clams don’t have much else going on and can take their time. In some ways, their lifestyle sounds pretty ideal: hang out in a snug burrow where predators can’t get at your soft body and extend your siphons out to bring in clean water for food and oxygen. Sure, when it comes to reproduction the only option available is free-spawning and hoping for the best, but that has proven to be a successful strategy for countless generations of your kind. Aside from the cost of making gametes, it’s a pretty low-energy way to produce offspring. Maybe the old saying “happy as a clam” isn’t that far off the truth.