A few days ago I was in the intertidal with my friend Brenna. This most recent low tide series followed on the heels of some magnificently large swells and it was iffy whether or not we’d be able to get out to where we wanted to do some collecting. Our first day we went up to Pistachio Beach, just north of Pigeon Point, where the rocky intertidal is bouldery and protected by some large rock outcrops.
So while the swell was indeed really big, we were pretty well protected in the intertidal. The Seymour Center has a standing order for slugs, hermit crabs, and algae. I was easily able to grab my limit (35) of hermit crabs over the course of the afternoon, and while it’s too early in the season for the algae to do much I had my sluggy friend with me to take care of finding nudibranchs, which left me free to let my attention wander as it would.
The very first thing to catch my eye as we go out there was the coenocytic green alga Codium setchellii, which I wrote about last time. I’ve seen and collected C. setchellii from this site before, but don’t remember seeing it in such large conspicuous patches. I need to review what I learned about the phenology of various intertidal algae, but here’s a thought. Maybe Codium is an early-season species that gets outcompeted by the plethora of fast-growing red algae later in the spring. Red algae were present at Pistachio Beach but not in the lush (and slippery!) abundance that I’ll see in, say, June. I’m willing to bet that Codium will be less abundant in the next few months.
In my experience, the six-armed stars of the genus Leptasterias have always been the most abundant sea stars on the stretch of coastline between Franklin Point and Pescadero. Even though they are small–a monstrously ginormous one would be as large as the palm of my hand–they are very numerous in the low-mid intertidal. I’ve seen them in all sorts of pinks and grays with varying amounts of mottling. Alas, I don’t know of any really reliable marks for identifying them to species in the field.
Unlike other familiar stars, such as the various Pisaster species and the common Patiria miniata (bat stars), which reproduce by broadcast spawning their gametes into the water, Leptasterias is a brooder. Males release sperm that is somehow acquired by neighboring females and used to fertilize their eggs. There isn’t any space inside a star’s body to brood developing embryos, so a Leptasterias female tucks her babies underneath her oral surface and then humps up over them. Leptasterias also humps up when preying on small snails and such, so that particular posture could indicate either feeding or brooding.
Here’s a Leptasterias humped up on a rock, photographed last spring:
The only way to tell if a Leptasterias star is feeding or brooding is to pick it up and look at the underside. I did that the other day and saw this:
Those little orange roundish things are developing embryos. While the mother is brooding she cannot feed, and can use only the tips of her arms to hang onto rocks. Don’t worry, I replaced this star where I found her and made sure she had attached herself as firmly as possible before I left her. In a few weeks her babies will be big enough to crawl away and she’ll be able to feed again.
Looks like the reproductive season for Leptasterias has begun.
The next day Brenna and I went to Davenport, again hoping to get lucky despite another not-so-low tide and big swell.
Davenport Landing Beach is a popular sandy beach, with rocky areas to the north and south. The topography of the north end is quite variable, with some large shallow pools and lots of vertical real estate to make the biota very diverse and interesting. The big rocks also provide shelter from the wind, a big plus for the intrepid marine biologist who insists on going out even when it’s crazy windy. The southern rocky area is very different, consisting of flat benches that slope gently towards the ocean, with comparatively little vertical terrain. The southern end of the beach is always more easily accessible, which is why I almost always go to the north. But this day the north wasn’t going to happen. The winter storms had washed away at least a vertical meter of sand between the rock outcrops. That and the not-so-low tide combined for conditions that made even getting out to the intended collecting site a pretty dodgy affair. So Brenna and I trudged across the beach to the south.
Along the way we saw lots of these thumb-sized objects on the beach. At first glance they look like pieces of plastic, but after you see a few of them you realize that they are clearly (ha!) gelatinous things of biological origin. They are slipper-shaped and you can stick them over the ends of your fingers. They have a bumpy texture on the outside and are smooth on the inside.
Any guesses as to what they are?
These funny little things are the pseudoconchs of a pelagic gastropod named Corolla spectabilis. What is a pseudoconch, you ask? If we break down the word into its Greek roots we have ‘pseudo-‘ which means ‘false’ and ‘conch’ which means shell. Thus a pseudoconch is a false shell. In this case, ‘false’ refers to the fact that this shell is both internal (as opposed to external) and uncalcified.
The animal that made these pseudoconchs, Corolla spectabilis, is a type of gastropod called a pteropod (Gk: ‘wing-foot’). Pteropods are pelagic relatives of nudibranchs, sea hares, and other marine slugs. They are indeed entirely pelagic, swimming with the elongated lateral edges of their foot. Like almost all pelagic animals, Corolla has a transparent gelatinous body. Even their shell is gelatinous, rather flimsier than most shells, but it serves to provide support for the animal’s body as it swims.
You can read more about Corolla spectabilis and see pictures and video here.
Why, you may be wondering, do the pseudoconchs of C. spectabilis end up on the beach, and where is the rest of the animal? The body of Corolla and other pteropods is soft and fragile. When strong storms and heavy swells seep through the area, the water gets churned up and pteropods (and other pelagic animals) get tossed about and shredded. This leaves their pseudoconchs to float on currents until they are either themselves demolished by turbulence or cast upon the beach. Corolla is commonly seen in Monterey Bay, and it is not unusual to find their pseudoconchs on the beaches after a series of severe storms.
Brenna and I were wondering if we could preserve the pseudoconchs somehow. I took several back to the lab and tried to dry them, thinking that they might behave like Velella velella does when dried. Unfortunately, the next day they had shriveled into unrecognizable little blobs of dried snot, and the day after that they had disintegrated completely into piles of dust. Maybe drying them more slowly would work. Something to consider the next time I run across pseudoconchs in the sand.